Вариант № 65

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
1
Задание № 61
i

Ука­жи­те номер ри­сун­ка, на ко­то­ром изоб­ра­жен рав­но­бед­рен­ный тре­уголь­ник.

1)

2)

3)

4)

5)



2
Задание № 452
i

Ука­жи­те вер­ное ра­вен­ство:



3
Задание № 543
i

Среди точек B левая круг­лая скоб­ка 6;0 пра­вая круг­лая скоб­ка , O левая круг­лая скоб­ка 0;0 пра­вая круг­лая скоб­ка , M левая круг­лая скоб­ка минус ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та ; ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та пра­вая круг­лая скоб­ка , C левая круг­лая скоб­ка минус 5;6 пра­вая круг­лая скоб­ка , D левая круг­лая скоб­ка 0; минус 6 пра­вая круг­лая скоб­ка вы­бе­ри­те ту, ко­то­рая при­над­ле­жит гра­фи­ку функ­ции, изоб­ражённому на ри­сун­ке:



4
Задание № 274
i

Если 16% не­ко­то­ро­го числа равны 28, то 60% этого числа равны:



5
Задание № 515
i

Если 10 в квад­ра­те умно­жить на альфа =925,84277, то зна­че­ние α с точ­но­стью до сотых равно:



6
Задание № 486
i

Число 213 яв­ля­ет­ся чле­ном ариф­ме­ти­че­ской про­грес­сии 3, 8, 13, 18, ... Ука­жи­те его номер.



7
Задание № 247
i

Най­ди­те пло­щадь фи­гу­ры, изоб­ра­жен­ной на ри­сун­ке.



8
Задание № 338
i

От листа жести, име­ю­ще­го форму квад­ра­та, от­ре­за­ли пря­мо­уголь­ную по­ло­су ши­ри­ной 5 дм, после чего пло­щадь остав­шей­ся части листа ока­за­лась рав­ной 24 дм2. Длина сто­ро­ны квад­рат­но­го листа (в де­ци­мет­рах) была равна:



9
Задание № 249
i

Най­ди­те зна­че­ние вы­ра­же­ния НОК(12, 18, 36)+НОД(39,52).



10
Задание № 460
i

Най­ди­те наи­мень­ший по­ло­жи­тель­ный ко­рень урав­не­ния  синус 2x= дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби .



11
Задание № 401
i

Най­ди­те зна­че­ние вы­ра­же­ния 270 умно­жить на дробь: чис­ли­тель: 5, зна­ме­на­тель: 7 конец дроби минус левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 7 конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 10 конец дроби пра­вая круг­лая скоб­ка : дробь: чис­ли­тель: 1, зна­ме­на­тель: 270 конец дроби .



12
Задание № 432
i

На одной чаше урав­но­ве­шен­ных весов лежат 4 яб­ло­ка и 2 груши, на дру­гой  — 2 яб­ло­ка, 4 груши и гирь­ка весом 80 г. Каков вес одной груши (в грам­мах), если все фрук­ты вме­сте весят 1500 г? Счи­тай­те все яб­ло­ки оди­на­ко­вы­ми по весу и все груши оди­на­ко­вы­ми по весу.



13
Задание № 103
i

Най­ди­те длину сред­ней линии пря­мо­уголь­ной тра­пе­ции с ост­рым углом 60°, у ко­то­рой боль­шая бо­ко­вая сто­ро­на и боль­шее ос­но­ва­ние равны 10.



14
Задание № 464
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: 27 в сте­пе­ни x плюс 9 в сте­пе­ни x минус 20 умно­жить на 3 в сте­пе­ни x , зна­ме­на­тель: 3 в сте­пе­ни x левая круг­лая скоб­ка 3 в сте­пе­ни x минус 4 пра­вая круг­лая скоб­ка конец дроби .



15
Задание № 195
i

Стро­и­тель­ная бри­га­да пла­ни­ру­ет за­ка­зать фун­да­мент­ные блоки у од­но­го из трех по­став­щи­ков. Сто­и­мость бло­ков и их до­став­ки ука­за­на в таб­ли­це. При по­куп­ке ка­ко­го ко­ли­че­ства бло­ков са­мы­ми вы­год­ны­ми будут усло­вия вто­ро­го по­став­щи­ка?

 

По­став­щикСто­и­мость фун­да­мент­ных бло­ков
(тыс. руб. за 1 шт.)
Сто­и­мость до­став­ки фун­да­мент­ных бло­ков
(тыс. руб. за весь заказ)
13351850
2365970
3420бес­плат­но


16
Задание № 226
i

Из пол­но­го бо­ка­ла, име­ю­ще­го форму ко­ну­са вы­со­той 9, от­ли­ли треть (по объ­е­му) жид­ко­сти. Вы­чис­ли­те  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби h в кубе , где h  — вы­со­та остав­шей­ся жид­ко­сти.



17
Задание № 287
i

Рас­по­ло­жи­те числа  ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ; ко­рень 20 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 180 конец ар­гу­мен­та ; ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 4 конец ар­гу­мен­та в по­ряд­ке воз­рас­та­ния.



18
Задание № 528
i

Наи­мень­шее целое ре­ше­ние не­ра­вен­ства \lg левая круг­лая скоб­ка x в квад­ра­те минус x минус 6 пра­вая круг­лая скоб­ка минус \lg левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка \leqslant\lg4 равно:



19
Задание № 559
i

Ав­то­мо­биль про­ехал не­ко­то­рое рас­сто­я­ние, из­рас­хо­до­вав 15 л топ­ли­ва. Рас­ход топ­ли­ва при этом со­ста­вил 9 л на 100 км про­бе­га. Затем ав­то­мо­биль су­ще­ствен­но уве­ли­чил ско­рость, в ре­зуль­та­те чего рас­ход топ­ли­ва вырос до 12 л на 100 км. Сколь­ко лит­ров топ­ли­ва по­на­до­бит­ся ав­то­мо­би­лю, чтобы про­ехать такое же рас­сто­я­ние?


Ответ:

20

Най­ди­те наи­боль­шее целое ре­ше­ние не­ра­вен­ства 3 в сте­пе­ни левая круг­лая скоб­ка x плюс 17 пра­вая круг­лая скоб­ка умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка минус x минус 16 пра­вая круг­лая скоб­ка боль­ше 1,08.


Ответ:

21
Задание № 111
i

Ос­но­ва­ние ост­ро­уголь­но­го рав­но­бед­рен­но­го тре­уголь­ни­ка равно 10, а синус про­ти­во­по­лож­но­го ос­но­ва­нию угла равен 0,6. Най­ди­те пло­щадь тре­уголь­ни­ка.


Ответ:

22
Задание № 592
i

Пусть (x;y)  — це­ло­чис­лен­ное ре­ше­ние си­сте­мы урав­не­ний

 си­сте­ма вы­ра­же­ний 2y минус x= минус 7,9y в квад­ра­те плюс 6xy плюс x в квад­ра­те =9. конец си­сте­мы .

Най­ди­те сумму x+y.


Ответ:

23
Задание № 353
i

По двум пер­пен­ди­ку­ляр­ным пря­мым, ко­то­рые пе­ре­се­ка­ют­ся в точке O, дви­жут­ся две точки M1 и M2 по на­прав­ле­нию к точке O со ско­ро­стя­ми 1  дробь: чис­ли­тель: м, зна­ме­на­тель: с конец дроби и 2  дробь: чис­ли­тель: м, зна­ме­на­тель: с конец дроби со­от­вет­ствен­но. До­стиг­нув точки O, они про­дол­жа­ют свое дви­же­ние. В пер­во­на­чаль­ный мо­мент вре­ме­ни M1O = 1 м, M2O = 17 м. Через сколь­ко се­кунд рас­сто­я­ние между точ­ка­ми M1 и M2 будет ми­ни­маль­ным?


Ответ:

24
Задание № 54
i

Най­ди­те 4x_1 умно­жить на x_2, где x1, x2  — абс­цис­сы точек пе­ре­се­че­ния па­ра­бо­лы и го­ри­зон­таль­ной пря­мой (см. рис.).


Ответ:

25
Задание № 565
i

Гео­мет­ри­че­ская про­грес­сия со зна­ме­на­те­лем 6 со­дер­жит 10 чле­нов. Сумма всех чле­ном про­грес­сии равна 42. Най­ди­те сумму всех чле­нов про­грес­сии с чет­ны­ми но­ме­ра­ми.


Ответ:

26
Задание № 536
i

Най­ди­те зна­че­ние вы­ра­же­ния 18 ко­си­нус левая круг­лая скоб­ка альфа плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка , если  синус 2 альфа = дробь: чис­ли­тель: 49, зна­ме­на­тель: 81 конец дроби , 2 альфа при­над­ле­жит левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби ; Пи пра­вая круг­лая скоб­ка .


Ответ:

27
Задание № 477
i

Най­ди­те сумму целых зна­че­ний x, при­над­ле­жа­щих об­ла­сти опре­де­ле­ния функ­ции

y= ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 7 плюс 6x минус x в квад­ра­те пра­вая круг­лая скоб­ка .


Ответ:

28
Задание № 118
i

Из точки А про­ве­де­ны к окруж­но­сти ра­ди­у­сом  дробь: чис­ли­тель: 4, зна­ме­на­тель: 3 конец дроби ка­са­тель­ная AB (B  — точка ка­са­ния) и се­ку­щая, про­хо­дя­щая через центр окруж­но­сти и пе­ре­се­ка­ю­щая ее в точ­ках D и C (AD < AC). Най­ди­те пло­щадь S тре­уголь­ни­ка ABC, если длина от­рез­ка AC в 3 раза боль­ше длины от­рез­ка ка­са­тель­ной. В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния 5S.


Ответ:

29
Задание № 539
i

Из двух рас­тво­ров с раз­лич­ным про­цент­ным со­дер­жа­ни­ем спир­та мас­сой 300 г и 700 г от­ли­ли по оди­на­ко­во­му ко­ли­че­ству рас­тво­ра. Каж­дый из от­ли­тых рас­тво­ров до­ли­ли в оста­ток дру­го­го рас­тво­ра, после чего про­цент­ное со­дер­жа­ние спир­та в обоих рас­тво­рах стало оди­на­ко­вым. Най­ди­те, сколь­ко рас­тво­ра (в грам­мах) было от­ли­то из каж­до­го рас­тво­ра.


Ответ:

30
Задание № 90
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния x минус ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 36 конец ар­гу­мен­та = дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 6 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: 2x плюс 12 конец дроби .


Ответ:
Завершить работу, свериться с ответами, увидеть решения.